

Università **DEGLI STUDI** DI PADOVA

Donatella Carbonera

Marco Bortolus

Alessandro Agostini

Biophysics group

Department of Chemical Sciences, University of Padova

Paola Costantini Davide Doni

Department of Biology, University of Padova

Elisabetta Bergantino

Department of Biology, University of Padova

***** CARIPARO Foundation (Starting Grant 2015-2019 Carbonera/Bortolus)

Metodologie che lo studente può imparare

- Metodologie di biologia molecolare (PCR, clonaggi, mutagenesi)
- Metodologie biochimiche per la purificazione di proteine ricombinanti espresse in diversi sistemi eterologhi (elettroforesi mono- e bidimensionali, cromatografie di affinità, a scambio ionico e gel filtrazione, western blot) e per il loro labelling con probes fluorescenti e di Spin elettronico

• Metodologie Spettroscopiche per la caratterizzazione strutturale di proteine in soluzione principalmente FRET, CD e EPR (electron paramagnetic resonance)

The site directed spin labelling (SDSL) Technique

SPIN LABELING

Spin labeling coupled to EPR techniques

Assemblaggio dei centri ferro-zolfo

Frataxin, a protein involved in the iron-sulphur clusters synthesis

Frataxin, a protein involved in the iron-sulphur clusters synthesis

Frataxin is a small acidic protein, highly conserved in most organisms from bacteria to mammalians, which so far has been supposed to have a role in the iron-sulphur cluster biosynthesis.

A low expression level of this protein is associated to the **neurodegenerative disease Friedreich's ataxia (FRDA)**, whose main biochemical feature is a large depletion of proteins relying on iron-sulphur clusters for function

Frataxina e atassia di Friedriech

Struttura di frataxina (FXN)

Paziente con sindrome di Friedriech

WT **FXN** Differenze e analógie nella risposta per Fe(III investigare la funzione fisiologica D122Y

FXN

Tecniche spettroscopiche:

•Fluorescenza

- Dicroismo circolare
- Dynamic light

scattering

•SDSL-EPR

SDSL-EPR dei mutanti FXN-Cys

I diversi siti marcati della proteina presentano una diversa mobilità.

Fe(III): effetto sugli spettri EPR

Tutti i siti marcati si immobilizzano in presenza di Fe(III).

A193C

T1. In vitro experiments using purified recombinant proteins /WT and mutants) to study the conformational effects induced by Fe and the putative interface regions between FXN and ISU by FRET and EPR.

The **FXN point mutants D122Y, G130V, N146K, and W155R** are all associated with an FRDA phenotype. We have already investigated them by NMR spectroscopy (submitted), finding perturbation of the NMR spectrum in each mutant when **iron and ISU** were subsequently added.

Cameleon (protein): sensori del Calcio

(M13: from skeletal muscle myosin light- chain kinase (MLCK) .

Spin labeling coupled to EPR techniques

Photoexcited triplet state - nitroxide distance

Porphyrin Triplet State as a Potential Spin Label for Nanometer Distance Measurements by PELDOR

Marilena Di Valentin; Marco Albertini; Enrico Zurlo; Marina Gobbo; Donatella Carbonera; J. Am. Chem. Soc. 2014, 136, 6582-6585.

Photoexcited triplet state - nitroxide distance

r_{MODEL} [nm]

CHEMISTRY

A European Journal

Calmodulin Peptide Interaction

Table 1. Summary of several amino acid sequences of calmodulin binding peptides and protein target sites in part adopted from Crivici & Ikura.³

SkMLCK (M13)				Κ	R	R	W	Κ	Κ	Ν	F	Ι	А	v	S	А	А	Ν	R	F	Κ	Κ	Ι	S	S
SMMLCK			А	R	R	Κ	W	Q	Κ	Τ	G	Η	А	v	R	А	I	G	R	L	S	S			
CaMK II			А	R	R	Κ	L	Κ	G	Α	Ι	\mathbb{L}	Т	Т	М	L	Α	Т	R	Ν	F	S			
Caldesmon						G	v	R	Ν	Ι	Κ	S	М	W	Е	Κ	G	Ν	V	F	S	S			
Calspermin			А	R	R	Κ	\mathbf{L}	Κ	А	А	v	Κ	А	v	V	А	S	S	R	L	G	S			
PFK F	М	Ν	Ν	W	Е	V	Y	Κ	\mathbb{L}	L	А	Η	Ι	R	\mathbb{P}	Ρ	Α	Ρ	к	S	G	S	Υ	Т	V
Calcineurin		А	R	Κ	Е	V	I	R	Ν	Κ	Ι	R	А	I	G	Κ	М	А	R	v	F	S	V	\mathbb{L}	R
Ca ²⁺ ATPase		R	G	Q	I	L	W	F	R	G	L	Ν	R	I	Q	Τ	Q	I	к	v	V	Ν	A	F	S
PDE			R	R	Κ	Н	L	Q	R	Ρ	Ι	F	R	L	R	С	\mathbf{L}	V	ĸ	Q	L	Ε	Κ		
NOS	Κ	R	R	А	I	G	F	Κ	Κ	L	А	Ε	А	v	Κ	\mathbb{F}	S	А	ĸ	L	Μ	G	Q		
Neurom. K A	Η	Κ	А	А	Τ	Κ	I	Q	Α	S	\mathbf{F}	R	G	Н	I	Τ	R	Κ	ĸ	L	Κ	G	Ε	Κ	K
Spektrin		Κ	Т	А	S	Ρ	W	Κ	S	Α	R	L	М	v	Η	Τ	V	А	Т	F	Ν	S	Ι	K	Ε
MARKS	Κ	Κ	Κ	Κ	Κ	R	F	S	F	Κ	Κ	S	F	Κ	L	S	G	F	S	F	Κ	Κ	S	Κ	K
Mastoparan							I	Ν	\mathbb{L}	Κ	А	\mathbb{L}	Α	A	\mathbf{L}	А	Κ	Κ	Ι	L					
Mellitin	G	Ι	G	G	Α	V	\mathbf{L}	Κ	V	L	Т	Т	G	\mathbf{L}	Ρ	Α	\mathbf{L}	Ι	S	W	Ι	Κ	R	Κ	R

The sequences are aligned by visual inspection of the putatively conserved major hydrophobic anchors, marked in bold and blue, and minor hydrophobic anchors marked in bold and green. Further criteria for the alignment are the putatively conserved basic residues, which are marked in black and bold. These basic residues were found in two calmodulin peptide structure^{19,20} to be essential for the binding of CaM to these peptides. The hydrophobic anchors interact with hydrophobic patches of calmodulin in the structures published.^{10,19,20}

Alignment of the CaM-binding peptides used in this study, as well as smMLCKp (19).

smMLCK:	ARRKWQKTGHAVRAIGRLSS
CaMKI:	AKSK <mark>W</mark> KQAFNATAVVRHMRKLQ
cNOS:	KRRAIGFKKLAEAVKFSAKLMGQ
PDE:	$Ac-QTEKMWQRLKGILRCLVKQL-NH_2$
CaD-A:	GVRNIKSMWEKGNVFSS
CaD-A*:	GVRNIKSMWEKGNVFSSC
CaD-B1:	NKETAGLKVGVSSRINEWLTKT
MEL:	(C)QQRKRKIWSILAPLGTTLVKLVAGIG(N)
MLC:	(C)QQRKRKIWSILAP-Ac(N)

Richard D. Brokx et al. J. Biol. Chem. 2001;276:14083-14091

JBC

The American Society for Biochemistry and Molecular Biology, Inc.

Thermodynamics of Calmodulin-Peptide Recognition

 $\begin{array}{c} {} T_{ABLR} \ I \\ Thermodynamics \ of \ CaM-peptide \ interactions \end{array}$

14086

Peptide	Temperature	Buffer	N _b	ΔH_{cal}	Ka
	°C			kJ/mol	M ⁻¹
CaMKI	5.3	PIPES	0.90	18.8	$(8.0 \pm 4.0) \times 10^7$
	10.0	PIPES	0.90	3.3	$(1.6 \pm 1.4) \times 10^7$
	15.0	PIPES	1.00	-15.1	$(2.8 \pm 0.6) \times 10^7$
	20.0	PIPES	1.10	-33.1	$(2.3 \pm 0.3) \times 10^7$
	25.0 ^a	PIPES	0.93	-50.2	$(3.4 \pm 0.8) \times 10^7$
	25.0	Imidazole	1.03	-49.4	$(7.0 \pm 1.0) \times 10^7$
	25.0	Imidazole	1.01	-52.3	$(2.4 \pm 0.3) \times 10^7$
	25.0	NaCacodylate	0.80	-51.0	$(6.0 \pm 1.0) \times 10^7$
	25.0	NaCacodylate	0.75	-49.0	$(4.0 \pm 0.9) \times 10^7$
	25.0	MOPS	0.93	-50.6	$(3.2 \pm 0.7) \times 10^7$
NOS	5.2	PIPES	0.95	60.7	$\sim 2.4 imes 10^8$
	10.0	PIPES	0.92	43.9	$\sim 1.8 \times 10^8$
	15.0	PIPES	0.99	24.3	$\sim 1.7 \times 10^8$
	20.0	PIPES	0.98	6.7	ND
	25.0*	PIPES	1.09	-11.7	$\sim 1.3 \times 10^{8}$
PDE	5.2	PIPES	0.90	51.9	$\sim 1.6 \times 10^8$
	11.0	PIPES	0.96	42.7	$\sim 1.2 \times 10^8$
	20.0	PIPES	1.00	24.7	$\sim 0.9 \times 10^8$
	24.0 ^e	PIPES	0.90	15.9	$\sim 1.1 \times 10^{8}$
MEL	10.1	PIPES	1.00	90.0	$(3.0 \pm 1.0) \times 10^{8}$
	15.0	PIPES	1.08	77.8	$(1.9 \pm 0.5) \times 10^{8}$
	20.0 ^d	PIPES	1.09	62.3	$(3.0 \pm 1.0) \times 10^{8}$
MLC	5.0	PIPES	0.97	31.4	$(2.3 \pm 0.4) \times 10^{6}$
	15.1	PIPES	0.96	16.7	$(3.8 \pm 0.5) \times 10^{6}$
	25.1	PIPES	ND	2.3	ND
CaD-A	5.0	PIPES	0.93	-33.1	$(4.1 \pm 0.4) \times 10^{6}$
	10.1	PIPES	0.90	-41.8	$(3.5 \pm 0.2) \times 10^{6}$
	15.0	PIPES	0.97	-49.4	$(3.3 \pm 0.3) \times 10^{6}$
	20.0	PIPES	0.92	-57.7	$(2.2 \pm 0.1) \times 10^{6}$
	25.0*	PIPES	0.90	-66.1	$(1.4 \pm 0.1) \times 10^{6}$
CaD-A*	5.0	PIPES	1.03	-24.3	$(0.8 \pm 0.4) \times 10^6$
	10.0	PIPES	1.03	-36.0	$(1.0 \pm 0.5) \times 10^{6}$
	17.0	PIPES	0.97	-39.3	$(1.7 \pm 0.8) \times 10^{6}$
	25.0	PIPES	0.96	-49.0	$(1.4 \pm 0.7) \times 10^6$
CoD At CH	25.0	DIDEC	0.90	50.6	$(0.4 \pm 0.9) \times 10^{6}$

 $\label{eq:constraint} \begin{array}{l} {}^{a}K_{a}=5.0\times10^{8}\,{\rm M}^{-1}\,(29).\\ {}^{b}K_{a}=5\times10^{8}\,{\rm M}^{-1}\,(55,56).\\ {}^{c}K_{a}=4.5\times10^{6}\,{\rm M}^{-1}\,(22).\\ {}^{d}K_{a}=3.3\times10^{8}\,{\rm M}^{-1}\,(85).\\ {}^{e}K_{a}=1.3\times10^{6}\,{\rm M}^{-1}\,(24). \end{array}$

	~	^	^	^	
1скк	PSWTTV	ILVKS	MLRKR	SFGNPF	
11Q5	PRLDTL	ILVKA	MGHRK	RFGNPFI	R
1IWQ	KSFKLS	GFSFK	K		
2HQW	ATFRAI	TSTLA	SSFKR	RRS	
3EWV	ATLDAL	LAALR	RIQRA	D	
1CDL	RKWQKT	GHAVR	AIGRL	SS	
2BBM	RRWKKN	FIAVS	AANRF	KKISSS	GAL
2L1W	QRWRSS	VSIVK	NRARR	FRMISNI	6
4AQR_1	QQWRKA	ALVLN	ASRRF	RYTLD	
4AQR_2	QKIRSH	AHALL	AANRF	MDM	
1NIW	KTFKEV	ANAVK	ISASL	М	
3HR4	IPLKVL	VKAVL	FACML	MRKTMAS	SR
3dvk	GHMGKI	YAAMM	IMDYY	KQSKVKI	K.
3DVM	-HMGKI	YAAMM	IMEYY	RQSKAKI	K.
3DVJ	-TVGKV	YAALM	IFDFY	KQNKTS	
30XQ	GKFYAT	FLIQE	YFRKF	KKR	
2BCX	AVWHKL	LSKQR	RRAVV	ACFRMT	2
2x0G	KKWKQS	VRLIS	LCQRL	SR	
1MXE	SKWKQA	FNATA	VVRHM	RK	
2KDU	ANWLRA	FNKVR	MQLQE	ARGEGE	ASKSLWFKG
1CDM	RKLKGA	ILTTM	LAT		
3SUI	RNWK-N	FALVP	LLRD		
2fot	SPWKSA	RLMVH	TVATF	NSIKER	
2JZI	NKIRAI	GKMAR	VFSVL	R	
1SY9	GGFRRI	ARLVG	VLREW	AYR	
3EWT	KYITTI	AGVMT	LS		
2KNE	ILWFRG	LNRIQ	TQIKV	VKAFHSS	3

1 5 10 15

Fig. 4. Comparison of selected CaM-target sequences as observed in canonical CaM-complex structures. Anchor residues are shown in red. Further details are provided in Table 1.

FEBS Journal 280 (2013) 5551-5565 @ 2013 FEBS

Distanza Cys-Tyr138 varia poco sempre intorno ai 35 A

Distanza Cys-Tyr99 varia da 41 a 49 A

in vivo experiments

Mechanical incorporation

Unnatural aminoacids

New side chain K1 (Fleisser et al., PNAS 2010)

(++) Can be used when functional cysteines (or disulfide bonds) are present and cannot be neither removed, nor labeled (to avoid protein denaturation, or malfunction).